Real-World Health Records for Pharmacovigilance

Nicholas P. Tatonetti, PhD
Herbert Irving Assistant Professor of Biomedical Informatics
Columbia University, USA
@nicktatonetti
Observation is the starting point of biological discovery.
Observation is the starting point of biological discovery

- Charles Darwin observed relationship between geography and phenotype
Observation is the starting point of biological discovery

- Charles Darwin observed relationship between geography and phenotype
- William McBride & Widukind Lenz observed association between thalidamide use and birth defects
The tools of observation are advancing
The tools of observation are advancing

- Human senses
The tools of observation are advancing

- Human senses
 - sight, touch, hearing, smell, taste
The tools of observation are advancing

- Human senses
 - sight, touch, hearing, smell, taste
- Mechanical augmentation
The tools of observation are advancing

- Human senses
 - sight, touch, hearing, smell, taste
- Mechanical augmentation
 - binoculars, telescopes, microscopes, microphones
The tools of observation are advancing

• Human senses
 • sight, touch, hearing, smell, taste

• Mechanical augmentation
 • binoculars, telescopes, microscopes, microphones

• Chemical and Biological augmentations
The tools of observation are advancing

- Human senses
 - sight, touch, hearing, smell, taste
- Mechanical augmentation
 - binoculars, telescopes, microscopes, microphones
- Chemical and Biological augmentations
 - chemical screening, microarrays, high throughput sequencing technology
The tools of observation are advancing

- Human senses
 - sight, touch, hearing, smell, taste

- Mechanical augmentation
 - binoculars, telescopes, microscopes, microphones

- Chemical and Biological augmentations
 - chemical screening, microarrays, high throughput sequencing technology

Bytes to KB
Megabytes to Terabytes
The tools of observation are advancing

- Human senses
 - sight, touch, hearing, smell, taste
- Mechanical augmentation
 - binoculars, telescopes, microscopes, microphones
- Chemical and Biological augmentations
 - chemical screening, microarrays, high throughput sequencing technology
- What’s next?
Your doctor is observing you like never before

>99% of Hospitals have Electronic Health Records

Source: CMS EHR Incentive Program data, April 2015 and CMS Provider of Services File, March 2015
• Goal: 1 billion patient records in a common data model
• ~300 million patient records integrated
• Automated tools available
But, there’s a problem…
Bias confounds observations
Discovery using the EHR

- The latest in our effort to use observational data to find and validate **drug-drug interactions**
- Estimating **disease heritability** using the 14 million patients’ medical records
Every drug order is an experiment.
Let’s focus on just one example...
Let’s focus on just one example...

Drug-Drug Interactions
Drug-drug interactions (DDIs)
Drug-drug interactions (DDIs)

- DDIs can occur when a patient takes 2 or more drugs
Drug-drug interactions (DDIs)

- DDIs can occur when a patient takes 2 or more drugs
- DDIs cause unexpected side effects
Drug-drug interactions (DDIs)

- DDIs can occur when a patient takes 2 or more drugs
- DDIs cause unexpected side effects
- 10-30% of adverse drug events are attributed to DDIs
Drug-drug interactions (DDIs)

- DDIs can occur when a patient takes 2 or more drugs
- DDIs cause unexpected side effects
- 10-30% of adverse drug events are attributed to DDIs
- Understanding of DDIs may lead to better outcomes
Drug-drug interactions (DDIs)

- DDIs can occur when a patient takes 2 or more drugs
- DDIs cause unexpected side effects
- 10-30% of adverse drug events are attributed to DDIs
- Understanding of DDIs may lead to better outcomes
- Precaution in prescription
Drug-drug interactions (DDIs)

- DDIs can occur when a patient takes 2 or more drugs
- DDIs cause unexpected side effects
- 10-30% of adverse drug events are attributed to DDIs
- Understanding of DDIs may lead to better outcomes
 - precaution in prescription
 - synergistic therapies
Polypharmacy increases with age

76% of older Americans used two or more prescription drugs

Source: CDC/NCHS, National Health and Nutrition Examination Survey
More needs to be done to understand and identify drug-drug interactions
More needs to be done to understand and identify drug-drug interactions

- Clinical trials do not typically investigate drug-drug interactions
More needs to be done to understand and identify drug-drug interactions

• Clinical trials do not typically investigate drug-drug interactions

• **Observational studies** are the only systematic way to detect drug-drug interactions
Large population databases enable DDI discovery

- Contain clinical data on millions of patients over many years
- Currently being used to establish single drug adverse events (pharmacovigilance)
- Eg. Spontaneous Adverse Event Reporting Systems
 - Collect adverse event reports for a patient (a snapshot in time)
 - Maintained by WHO > FDA > Health Canada
How to discover effects when they are not *directly* reported?
Diseases can be identified by the side effects they elicit
Diseases can be identified by the side effects they elicit
Diseases can be identified by the side effects they elicit.
Diseases can be identified by the side effects they elicit
Diseases can be identified by the side effects they elicit.

Diagram:
- Diabetes
- Level of detection
- Measured minor effects
- Unmeasured severe effect
Diseases can be identified by the side effects they elicit

- physicians use observable side effects to form hypothesis about the underlying disease
Diseases can be identified by the side effects they elicit

- physicians use observable side effects to form hypothesis about the underlying disease
- e.g. you can't see diabetes, but you can measure blood glucose
Severe ADE’s can be identified by the presence of more minor (and more common) side effects
Severe ADE’s can be identified by the presence of more minor (and more common) side effects

- First, identify the common side effects that are harbingers for the underlying severe AE
Severe ADE’s can be identified by the presence of more minor (and more common) side effects

- First, identify the common side effects that are harbingers for the underlying severe AE
- Then, combine these side effects together to form an “effect profile” for an
Identify acquired LQTS drug-drug interactions using Latent Signal Detection

LQTS, AFib, bradycardia, tachycardia

level of detection
measured minor effects
unmeasured severe effect

Drug-drug interactions and acquired Long QT Syndrome (LQTS)

- Prolonging the QT interval can lead to a dangerous **ventricular tachycardia**
- Drugs can cause acquired LQTS by blocking the hERG channel
- We are good at testing for single drugs
- We know almost nothing when it comes to DDIs
Latent Signal Detection of acquired LQTS

Top Prediction:
Ceftriaxone + Lansoprazole

- Ceftriaxone — common in-patient cephalosporin antibiotic
- Lansoprazole — proton-pump inhibitor used to treat GERD, one of the most commonly taken drugs in the world

Lorberbaum, et al. JACC (2016)
Side Effect Profile

Lorberbaum, et al. JACC (2016)
Side Effect Profile

Ceftriaxone + Lansoprazole

FAERS

Ceftriaxone + Lansoprazole

Lorberbaum, et al. JACC (2016)
FAERS

Ceftriaxone + Lansoprazole

Lorberbaum, et al. JACC (2016)
Electronic Health Records

Ceftriaxone + Lansoprazole

Cefuroxime + Lansoprazole

Lorberbaum, et al. JACC (2016)
Ceftriaxone + Lansoprazole

Cefuroxime + Lansoprazole

Electronic Health Records

Lorberbaum, et al. JACC (2016)
Automated Patch Clamp

• Collaboration with Rocky Kass (CUMC Pharmacology Dept.)

• Take HEK293 cells over-expressing the hERG channel

• Perform a single-cell patch clamp experiment
 • control
 • ceftriaxone alone
 • lansoprazole alone
 • combination of ceftriaxone and lansoprazole

Voltage protocol: step to +40mV followed by a return to -40mV

Lorberbaum, et al. JACC (2016)
Ceftriaxone + Lansoprazole

Lorberbaum, et al. JACC (2016)
Ceftriaxone + Lansoprazole

Cefuroxime + Lansoprazole

Lorberbaum, et al. JACC (2016)
Ceftriaxone + Lansoprazole

Cefuroxime + Lansoprazole

Lorberbaum, et al. JACC (2016)
Computational model of human ventricular myocyte

Lorberbaum, et al. JACC (2016)
Computational model of human ventricular myocyte

- Wildtype channel
- 1μM Lansoprazole + 100μM Ceftriaxone (10% block)
- 10μM Lansoprazole + 100μM Ceftriaxone (55% block)

most common at CUMC

10ms longer

Lorberbaum, et al. JACC (2016)
Guess who just learned about crypto? The world’s first blockchain primer for kids drops 10.30.18

a children’s book by Nick & Noah

More at nickandnoah.com
Thank you

tatonettilab.org
nick.tatonetti@columbia.edu
@nicktatonetti

Current Lab Members
Anna Basile, PhD
Rami Vanguri, PhD
Joseph Romano
Yun Hao, MS
Phyllis Thangaraj
Alexandre Yahi
Fernanda Polubriaginof, MD
Nicholas Giangreco
Jenna Kefeli
Kai Chen
Theresa Koleck, PhD

Collaborators
David Goldstein, PhD
Krzysztof Kirylyuk, MD, MS
David Vawdrey, PhD
Robert Kass, PhD
Kevin Sampson, PhD
Brent Stockwell, PhD
George Hripcsak, MD, MS
Ziad Ali, MD, DPhil
Ray Woosley, MD, PhD (Credible Meds)
Konrad Karczewski, PhD (Broad/MGH)
Joel Dudley, PhD (Mount Sinai)
Li Li, PhD (Mount Sinai)
Patrick Ryan, PhD (OHDSI)
Russ Altman (Stanford)
Issac Kohane (HMS)
Shawn Murphy (HMS)

Funding
NIGMS R01GM107145
NCATS OT3TR002027
Herbert Irving Fellowship
PhRMA Research Starter Grant
NCI P30CA013696
NIMH R03MH103957

Weill Cornell Medicine

Columbia University
IN THE CITY OF NEW YORK

NewYork-Presbyterian
The University Hospital of Columbia and Cornell